Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Tetrakis[phthalocyaninato(2-)antimony(III)] hexadecaiodotetraantimony(III)

Jan Janczak ${ }^{\text {a,b }}{ }^{\text {a }}$ and Ynara Marina Idemori ${ }^{\text {a }}$

${ }^{\text {a }}$ Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, CEP 31270-901 Belo Horizonte MG, Brazil, and ${ }^{\text {b }}$ Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wrocław, Poland
Correspondence e-mail: jjanek@dedalus.lcc.ufmg.br

Received 10 October 2001
Accepted 17 October 2001
Online 14 December 2001
Crystals of a new antimony(III) phthalocyanine complex with the formula $\left[\mathrm{Sb}\left(\mathrm{C}_{32} \mathrm{H}_{16} \mathrm{~N}_{8}\right)\right]_{4}\left(\mathrm{Sb}_{4} \mathrm{I}_{16}\right)$, or $(\mathrm{SbPc})_{4}^{+} \cdot\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$, where Pc is phthalocyaninate, have been obtained by the reaction of pure powdered antimony with phthalonitrile under a stream of iodine vapour. The crystals are built up from separate but interacting $(\mathrm{SbPc})^{+}$cations and centrosymmetric $\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$ anions. Each Sb atom of two independent $(\mathrm{SbPc})^{+}$ units is bonded to the four isoindole N atoms of the phthalocyaninate (2-) macrocycle and lies $1.0 \AA$ out of the plane defined by four isoindole N atoms. The anionic part of the complex consists of four SbI_{6} distorted octahedra joined together into a centrosymmetric $\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$ anion. The arrangement of oppositely charged moieties in the crystal is mainly determined by ionic attraction and by a set of distinct donor-acceptor interactions between $(\mathrm{SbPc})^{+}$and $\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$ ions.

Comment

This study is part of an investigation on the synthesis and characterization of iodine-doped metallophthalocyanines. Earlier, we reported that besides the well characterized iodine-doped metallophthalocyanines and diphthalocyanines in which the iodine-doped atoms form chains of disordered symmetrical triiodide ions (Janczak et al., 1998; Janczak, Kubiak \& Jezierski, 1999; Janczak, Kubiak, Svoboda et al., 2000; Janczak \& Kubiak, 1999a; Janczak \& Idemori, 2001a), and metallophthalocyanines in which the I atoms are directly joined to the central metal ion yielding mono- or diiodometallophthalocyanine complexes (Janczak \& Kubiak, 1999b,c; Janczak \& Idemori, 2001b), the I atoms can form a neutral I_{2} molecule which is a bridge for the dimerization of monoiodometallophthalocyanines (Janczak, Kubiak \& Hahn, 1999) or for the development of a polymeric supramolecular structure of diiodometallophthalocyanines (Janczak, Razik \& Kubiak, 1999). Quite recently we reported that, depending on
the synthesis conditions, iodine-doped atoms could form ordered but unsymmetrical triiodide ions (Janczak \& Kubiak, 1999d; Kubiak et al., 1999; Janczak \& Idemori, 2002). The antimony(III) phthalocyanine-antimony(III) iodine complex, $\left[(\mathrm{SbPc})_{4}\left(\mathrm{Sb}_{4} \mathrm{I}_{16}\right)\right]$, is isostructural with the bismuth(III) analog, $\left[(\mathrm{BiPc})_{4}\left(\mathrm{Bi}_{4} \mathrm{I}_{16}\right)\right]$, (Kubiak \& Ejsmont, 1999) and to our knowledge it is the second structurally characterized phthalocyaninato compound which contain the same metal in both ionic parts of the complex, i.e. in $(\mathrm{SbPc})^{+}$as well as in $\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$.

The crystal of the title complex, (I), is built up from separate but interacting units of (SbPc$)^{+}$and $\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$ (Fig. 1). The two crystallographically independent $(\mathrm{SbPc})^{+}$cation units have essentially the same geometry. In both SbPc cation moieties, each of the phthalocyaninate (2-) macrocycles shows a saucershaped form, as a result of the interaction of the central $\mathrm{Sb}^{\text {III }}$ ion with the oppositely charged $\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$ unit. The greatest deviation from the planes defined by the four isoindole N atoms of the Pc macrocycles is observed for the outermost C atoms of phenyl rings C26-C31 [0.157 (3)-0.464 (3) A $]$ and C34-C39 [0.286 (3)-0.634 (3) Å] for the Sb 1 Pc and Sb 2 Pc units, respectively. The positively charged Sb 1 and Sb 2 atoms are significantly displaced from the N_{4}-isoindole planes towards the I atoms of the $\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$ counter-ion. The displacements of Sb 1 and Sb 2 are almost equal, viz. 0.999 (3) and 1.010 (3) \AA for Sb 1 and Sb 2 , respectively. This is quite reasonable because the large ionic radius of antimony(III) (about $0.90 \AA$) prevents it fitting inside the cavity of the phthalocyaninate(2-) macrocycle (Shannon, 1976), in addition to the ionic attraction between the positively charged $\mathrm{Sb}^{\text {III }}$ atoms with I atoms of $\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$. The influence of the interaction is clearly manifested in the $\mathrm{Sb}-\mathrm{N}_{\text {isoindole }}$ coordination leading to the molecular symmetry of the $\mathrm{Sb}-\mathrm{N}$ core being close to C_{s} and not to $C_{4 v}$. A similar deviation of the antimony(III) ion from the N_{4}-isoindole plane has been observed in other iodine-doped antimony(III) monophthalocyaninate complexes (Kubiak \& Razik, 1998; Kubiak et al., 1999). However, in diphthalocyaninato(2-)antimony(III) complexes, in which the $\mathrm{Sb}^{\mathrm{III}}$ atom is sandwiched between two

(I)
phthalocyaninate macrocycles, the displacement of $\mathrm{Sb}^{\text {III }}$ (about $1.45 \AA$) is mainly determined by the $\mathrm{Pc}-\mathrm{Pc}$ interaction of the SbPc_{2} units, for instance, in $\left(n-\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{Sb}^{\mathrm{II}} \mathrm{Pc}_{2}\right] \cdot 2 \mathrm{THF}$ and (PNP) $)_{2}\left[\mathrm{Sb}^{\mathrm{III}} \mathrm{Pc}_{2}\right] \mathrm{Br} \cdot 2 \mathrm{Et}_{2} \mathrm{O}$, which are the two sandwichtype antimony(III) diphthalocyaninate(2-) complexes that have been recently structurally characterized (Hückstädt et al., 2001). For a comparison, the deviation of the $\mathrm{Bi}^{\mathrm{III}}$ cation from
the N_{4}-isoindole plane in the isostructural $\mathrm{Bi}^{\text {III }}$ analog complex is 1.137 (7) \AA (Kubiak \& Ejsmont, 1999). The difference between the displacement of the $\mathrm{Sb}^{\text {III }}$ and $\mathrm{Bi}^{\text {III }}$ cations from the N_{4} planes of the Pc macro-rings is consistent with the difference between their ionic radii (Shannon, 1976).

The anionic part of the complex consists of four deformed SbI_{6} octahedra joined together into a centrosymmetric $\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$ counter-ion. The $\mathrm{Sb}-\mathrm{I}$ bond lengths fall into two groups: shorter $\mathrm{Sb}-\mathrm{I}$ bonds with the iodine terminal and longer with the iodine bridging. However, in the $\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$ anionic complex, two different bridging I atoms exist. The I2 and I 3 atoms bridge two Sb ions, while I 1 is a bridge for the three Sb ions. The distortion of the SbI_{6} polyhedron from O_{h} symmetry is likely to be due to the electron lone pair on the Sb ion. Looking in more detail at the differences between the $\mathrm{Sb}-\mathrm{I}$ bond lengths, as well as at the coordination geometry around the Sb 3 and Sb 4 atoms (and symmetrically equivalents), it is clear that they have different coordinations. The Sb 3 atom joins five I atoms with relatively short $\mathrm{Sb}-\mathrm{I}$ bonds, the sixth $\mathrm{Sb}-\mathrm{I}$ bond length being relatively long. In the coordination sphere of the second Sb atom, Sb 4 , three short $\mathrm{Sb}-\mathrm{I}$ bonds and three relatively long $\mathrm{Sb}-\mathrm{I}$ bonds are

(a)

(b)

Figure 1
The molecular structure of (a) the two independent SbPc^{+}units and (b) the $\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$ counter-ion [symmetry code: (i) $\left.1-x, 1-y,-z\right]$. Ellipsoids show 50% probability displacement and H atoms are shown as spheres of an arbitrary radius.

Figure 2
The molecular packing in the unit cell showing the $\mathrm{Sb} \cdots \mathrm{I}$ interactions (dashed lines).
observed. In conclusion, it could be said that the $\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$ counter-ion is composed from two pairs of symmetrically equivalent units: $\left[\mathrm{SbI}_{5}\right]^{2-}$ and $\left[\mathrm{SbI}_{3}\right]$. The Sb 3 atom in the $\left[\mathrm{SbI}_{5}\right]^{2-}$ ion has distorted square-pyramidal coordination, four I atoms in a plane (I1, I2, I3 and I4) and one apical I5 atom. The relatively long $\mathrm{Sb} 3-\mathrm{I} 1^{\mathrm{i}}$ bond in a trans position to the apical I atom indicates the stereochemical effect of the electron lone pair. In the coordination sphere of the Sb 4 atom, it is not clear in which direction the electron lone pair points, since the three relatively long $\mathrm{Sb}-\mathrm{I}$ bond lengths are very similar. However, the mutual orientation of both $\left[\mathrm{SbI}_{5}\right]^{2-}$ and SbI_{3} units related by an inversion centre in the crystal leads to the formation of an $\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$ counter-ion. A similar pattern of short and long $M-\mathrm{I}$ bond lengths is observed in the $\left[\mathrm{Bi}_{4} \mathrm{I}_{16}\right]^{4-}$ ion of the bismuth(III) phthalocyaninate analog complex, but no comment was made on this fact (Kubiak \& Ejsmont, 1999).

In the unit cell (Fig. 2), there seems to be significant ionic attraction between the $(\mathrm{SbPc})^{+}$and $\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$ counter-ions. Each $\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$ anion is surrounded by four (SbPc$)^{+}$units. The Sb 1 and Sb 2 atoms of the $(\mathrm{SbPc})^{+}$moieties interact with three I atoms of $\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]^{4-}$ (Sb1 with I4, I6 and I1, and Sb2 with I2, I4 and I5), since the $\mathrm{Sb} \cdots$ I contacts are shorter than $4.35 \AA$ from the Sb atoms, that value being the sum of the van der Waals radii of Sb and I (Pauling, 1960). The dihedral angle between mean planes through the Pc macrocycle of the $(\mathrm{Sb} 1 \mathrm{Pc})^{+}$and $(\mathrm{Sb} 2 \mathrm{Pc})^{+}$units is 106.4°. The centrosymmetric $\left[(\mathrm{SbPc})_{4^{-}}\right.$ $\left(\mathrm{Sb}_{4} \mathrm{I}_{16}\right)$] aggregates in the crystal form $\pi-\pi$-interacted stacks in a back-to-back manner of the Pc macrocycle. The back-to-back distance in the stack of two neighbouring $\left[(\mathrm{SbPc})_{4}\left(\mathrm{Sb}_{4} \mathrm{I}_{16}\right)\right]$ molecules is shorter than $3.0 \AA$. This value indicates the interaction and overlapping of the π clouds of the phthalocyaninate macrocycle. The $\pi-\pi$ intermolecular interaction is a common feature in the field of phthalocyanine chemistry, since the phthalocyanine and its metal complexes tend to aggregate the molecules to each other due to the strong $\pi-\pi$ interaction (Nevin et al., 1987; Terekhov et al., 1996; Isago et al., 1997, 1998).

Although the crystals of $\left[(\mathrm{SbPc})_{4}\left(\mathrm{Sb}_{4} \mathrm{I}_{16}\right)\right]$ are built up from oppositely charged $(\mathrm{SbPc})^{+}$and $\left(\mathrm{Sb}_{4} \mathrm{I}_{16}\right)^{4-}$ ions, the compound does not possess the characteristic properties of ionic crystals.

The solubility of this compound in the polar solvents, water, methanol, ethanol etc., is insignificant and it is slightly soluble in pyridine, DMSO, THF and chloronaphthalene. As can be seen from the crystal structure architecture of $\left[(\mathrm{SbPc})_{4}\left(\mathrm{Sb}_{4} \mathrm{I}_{16}\right)\right]$ that both hydrophilic parts of this complex in the crystal are surrounded by the hydrophobic peripheral phenyl rings of the Pc macrocycle.

Experimental

Crystals of $\left[(\mathrm{SbPc})_{4}\left(\mathrm{Sb}_{4} \mathrm{I}_{16}\right)\right]$ were obtained by the direct reaction of pure powdered antimony with phthalonitrile (Kubiak \& Janczak, 1993) under a stream of iodine vapour at 513 K .

Crystal data

$\left[\mathrm{Sb}\left(\mathrm{C}_{32} \mathrm{H}_{16} \mathrm{~N}_{8}\right)\right]_{4}\left[\mathrm{Sb}_{4} \mathrm{I}_{16}\right]$
$M_{r}=5054.62$
Triclinic, $P \overline{1}$
$a=15.963$ (3) £
$b=16.051$ (3) £
$c=16.552(3) \AA$
$\alpha=88.59(3)^{\circ}$
$\beta=62.54(3)^{\circ}$
$\gamma=69.16(3)^{\circ}$
$V=3466.9(11) \AA^{3}$
$Z=1$

Data collection

Kuma KM-4 with two-dimensional area CCD detector
ω scans
Absorption correction: analytical face-indexed (SHELXTL; Sheldrick, 1990)
$T_{\text {min }}=0.425, \quad T_{\text {max }}=0.683$
29594 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.079$
$S=1.01$
14695 reflections
829 parameters
H atoms treated by a mixture of independent and constrained refinement

The ω-scan technique was used, with $\Delta \omega=0.75^{\circ}$ for one image. The 960 images for six different runs covered about 95% of the Ewald sphere. The lattice parameters were calculated using 458 reflections obtained from 50 images for 10 runs with different orientations in reciprocal space and after data collection were refined on 10265 reflections.

Data collection: KM-4 CCD Software (Kuma, 1999); cell refinement: KM-4 CCD Software; data reduction: KM-4 CCD Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

This research was supported by CNPq foundation.

[^0]Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

Sb3-I1	3.179 (1)	Sb1-N7	2.189 (4)
Sb3-I2	3.046 (1)	Sb1-N3	2.191 (4)
Sb3-I3	2.984 (1)	Sb1-N5	2.209 (4)
Sb3-I4	2.957 (1)	Sb1-I4	3.653 (1)
Sb3-I5	2.834 (1)	Sb1-I6	3.729 (1)
Sb3-I1 ${ }^{\text {i }}$	3.400 (1)	Sb1-I1 ${ }^{\text {i }}$	3.546 (1)
Sb4-I6	2.849 (1)	Sb2-N11	2.185 (4)
Sb4-I7	2.814 (1)	Sb2-N13	2.189 (4)
Sb4-I8	2.779 (1)	Sb2-N9	2.212 (4)
Sb4-I2	3.354 (1)	Sb2-N15	2.217 (4)
Sb4-I1 ${ }^{\text {i }}$	3.362 (1)	Sb2-I2	3.5426 (9)
Sb4-I3 ${ }^{\text {i }}$	3.3705 (9)	Sb2-I4	3.548 (1)
Sb1-N1	2.181 (4)	Sb2-I5	3.918 (1)
$\mathrm{I} 1-\mathrm{Sb} 3-\mathrm{I} 3$	88.53 (4)	I7-Sb4-I3 ${ }^{\text {i }}$	94.86 (4)
$\mathrm{I} 1-\mathrm{Sb} 3-\mathrm{I} 2$	90.36 (4)	$\mathrm{I} 8-\mathrm{Sb} 4-\mathrm{I1}{ }^{\text {i }}$	92.25 (4)
I1-Sb3-I5	95.39 (4)	I8-Sb4-I3 ${ }^{\text {i }}$	87.32 (4)
I1-Sb3-I4	172.56 (2)	Sb3-I2-Sb4	96.53 (3)
$\mathrm{I} 1-\mathrm{Sb} 3-\mathrm{I} 1^{\text {i }}$	77.15 (4)	Sb3-I1-Sb4 ${ }^{\text {i }}$	94.08 (4)
$\mathrm{I} 2-\mathrm{Sb} 3-\mathrm{I} 1^{\text {i }}$	88.77 (3)	Sb3-I3-Sb4 ${ }^{\text {i }}$	97.61 (4)
I2-Sb3-I3	175.08 (2)	N1-Sb1-N7	78.7 (2)
I2-Sb3-I4	91.79 (4)	N1-Sb1-N3	78.0 (2)
I2-Sb3-I5	87.81 (3)	N7-Sb1-N3	126.6 (2)
I3-Sb3-I4	88.73 (4)	N1-Sb1-N5	125.0 (2)
I3-Sb3-I5	97.06 (3)	N7-Sb1-N5	77.3 (2)
I4-Sb3-I5	91.81 (4)	N3-Sb1-N5	78.0 (2)
I6-Sb4-I7	96.70 (4)	N11-Sb2-N13	77.7 (2)
I6-Sb4-I8	91.32 (4)	N11-Sb2-N9	78.0 (2)
$\mathrm{I} 6-\mathrm{Sb} 4-\mathrm{I} 1^{\text {i }}$	89.12 (4)	N13-Sb2-N9	124.4 (2)
$\mathrm{I} 6-\mathrm{Sb} 4-\mathrm{I} 2^{\text {i }}$	113.17 (4)	N11-Sb2-N15	126.4 (2)
I6-Sb4-I3 ${ }^{\text {i }}$	168.44 (2)	N13-Sb2-N15	78.3 (2)
I7-Sb4-I8	96.66 (4)	N9-Sb2-N15	77.4 (2)

Symmetry code: (i) $1-x, 1-y,-z$.

References

Hückstädt, H., Tutass, A., Göldner, M., Cornellissen, U. \& Homborg, H. (2001). Z. Anorg. Allg. Chem. 627, 485-497.

Isago, H., Leznoff, C. C., Ryan, M. F., Metcalfe, R. A., Davis, R. \& Lever, A. B. P. (1998). Bull. Chem. Soc. Jpn, 71, 1039-1047.

Isago, H., Trekhov, D. S. \& Leznoff, C. C. (1997). J. Porphyrins Phthalocyanines, 1, 135-140.
Janczak, J. \& Idemori, Y. M. (2001a). Inorg. Chim. Acta, 325, 85-93.
Janczak, J. \& Idemori, Y. M. (2001b). Acta Cryst. C57, 924-925.
Janczak, J. \& Idemori, Y. M. (2002). Acta Cryst. C58. Submitted.
Janczak, J. \& Kubiak, R. (1999a). Polyhedron, 18, 1621-1627.
Janczak, J. \& Kubiak, R. (1999b). Inorg. Chim. Acta, 288, 174-180.
Janczak, J. \& Kubiak, R. (1999c). Pol. J. Chem. 73, 1587-1592.
Janczak, J. \& Kubiak, R. (1999d). Inorg. Chem. 38, 2429-2433.
Janczak, J., Kubiak, R. \& Hahn, F. (1998). Inorg. Chim. Acta, 281, 195-200.
Janczak, J., Kubiak, R. \& Hahn, F. (1999). Inorg. Chim. Acta, 287, 101-104.
Janczak, J., Kubiak, R. \& Jezierski, A. (1999). Inorg. Chem. 38, 2043-2049.
Janczak, J., Kubiak, R., Svoboda, I., Jezierski, A. \& Fuess, H. (2000). Inorg. Chim. Acta, 304, 150-155.
Janczak, J., Razik, M. \& Kubiak, R. (1999). Acta Cryst. C55, 359-361.
Kubiak, R. \& Ejsmont, K. (1999). J. Mol. Struct. 474, 275-281.
Kubiak, R. \& Janczak, J. (1993). J. Alloys Compd, 204, L7-8.
Kubiak, R., Janczak, J. \& Razik, M. (1999). Inorg. Chim. Acta, 293, 155-159.
Kubiak, R. \& Razik, M. (1998). Acta Cryst. C54, 483-485.
Kuma (1999). KM-4 CCD Software. Version 1.63. Kuma Diffraction, Wrocław, Poland.
Nevin, W. A., Liu, W. \& Lever, A. B. P. (1987). Can. J. Chem. 65, 855-858.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767,
Sheldrick, G. M. (1990). SHELXTL. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Terekhov, D. S., Nolan, K. J. M., McArthur, C. R. \& Leznoff, C. C. (1996). J. Org. Chem. 61, 3034-3040.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1539). Services for accessing these data are described at the back of the journal.

